

Categories of abstract and noncommutative measurable spaces

Joint work with Tobias Fritz

Antonio Lorenzin

International Iberian Nanotechnology Laboratory (INL) – January 2026

Contents

1. Preliminaries and motivation

2. Deterministic side

3. Probabilistic side

Preliminaries and motivation

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a “nice way”.

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a “nice way”.

Classical probability:

Measurable spaces (X, Σ_X) , or just X . (Σ_X is a σ -algebra.)

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a “nice way”.

Classical probability:

Measurable spaces (X, Σ_X) , or just X . (Σ_X is a σ -algebra.)

For well-behaved measurable spaces, one generally restricts to **standard Borel spaces** (\cong finite sets, \mathbb{Z} or \mathbb{R}).

Classical and quantum probability together

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a “nice way”.

Classical probability:

Measurable spaces (X, Σ_X) , or just X . (Σ_X is a σ -algebra.)

For well-behaved measurable spaces, one generally restricts to **standard Borel spaces** (\cong finite sets, \mathbb{Z} or \mathbb{R}).

Quantum probability: (*unital*) C^* -algebras.

Classical and quantum probability together

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a “nice way”.

Classical probability:

Measurable spaces (X, Σ_X) , or just X . (Σ_X is a σ -algebra.)

For well-behaved measurable spaces, one generally restricts to **standard Borel spaces** (\cong finite sets, \mathbb{Z} or \mathbb{R}).

Quantum probability: (*unital*) C^* -algebras.

(Quantum logic: ortholattices).

Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system

Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\}$ \Rightarrow All possible observables

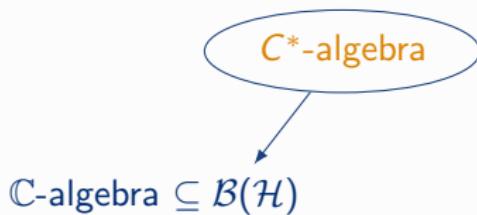
Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\} \Rightarrow$ All possible observables

C^* -algebra

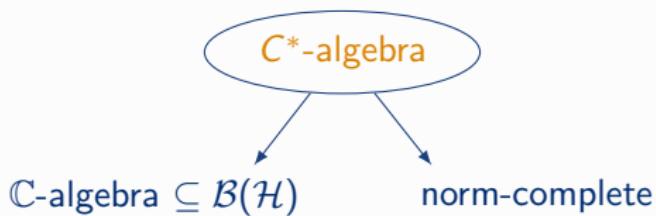
Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\}$ \Rightarrow All possible observables



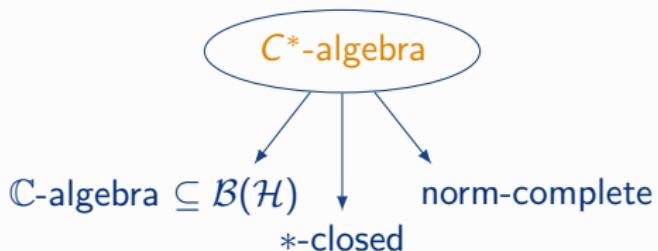
Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\} \Rightarrow$ All possible observables



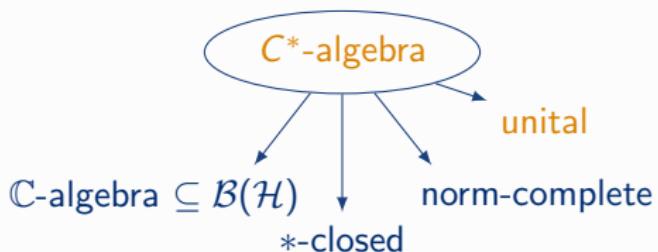
Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\} \Rightarrow$ All possible observables



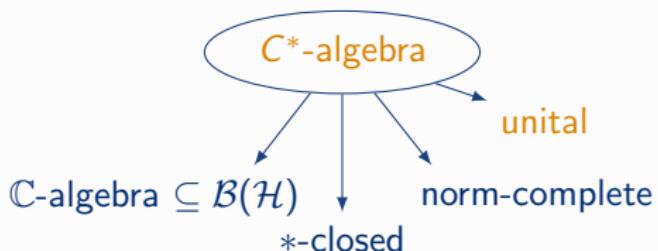
Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\} \Rightarrow$ All possible observables



Algebras of observables

Hilbert space \mathcal{H} \Rightarrow Quantum system
 $\mathcal{B}(\mathcal{H}) := \{\mathcal{H} \rightarrow \mathcal{H} \text{ bounded}\} \Rightarrow$ All possible observables



Positive cone: $a \geq 0 \stackrel{\text{def}}{\iff} a = b^*b \text{ for some } b.$

Main examples

- M_n , the algebra of $n \times n$ matrices. For $A \in M_n$,

$$A^* := \overline{A^T}, \quad A \geq 0 \iff \text{positive semidefinite}.$$

Main examples

- M_n , the algebra of $n \times n$ matrices. For $A \in M_n$,

$$A^* := \overline{A^T}, \quad A \geq 0 \iff \text{positive semidefinite.}$$

- Given a compact Hausdorff space X ,

$$C(X) := \{f: X \rightarrow \mathbb{C} \text{ continuous}\}$$

is a C^* -algebra with $f^*(x) := \overline{f(x)}$. $f \geq 0$ iff $f(x) \geq 0$ for all $x \in X$.

Main examples

- M_n , the algebra of $n \times n$ matrices. For $A \in M_n$,

$$A^* := \overline{A^T}, \quad A \geq 0 \iff \text{positive semidefinite.}$$

- Given a compact Hausdorff space X ,

$$C(X) := \{f: X \rightarrow \mathbb{C} \text{ continuous}\}$$

is a C^* -algebra with $f^*(x) := \overline{f(x)}$. $f \geq 0$ iff $f(x) \geq 0$ for all $x \in X$.

Gelfand duality

$X \mapsto C(X)$ yields a contravariant equivalence

$$\left\{ \begin{array}{l} \text{compact} \\ \text{spaces} \\ \text{and} \\ \text{continuous} \\ \text{maps} \end{array} \right\} \xrightarrow{\cong^{\text{op}}} \left\{ \begin{array}{l} \text{commutative} \\ \text{algebras} \\ \text{and} \\ \text{homomorphisms} \end{array} \right\}^{C^* \text{-} *}$$

Probabilistic Gelfand duality

Probabilistic studies between C^* -algebras: **cpu maps** (completely positive unital).

Probabilistic Gelfand duality

Probabilistic studies between C^* -algebras: **cpu maps** (completely positive unital). **Idea:** A probability measure p on a measurable space X requires:

- $p(U) \geq 0 \rightsquigarrow$ (Complete) positivity
- $p(X) = 1 \rightsquigarrow$ Unitality

Probabilistic Gelfand duality

Probabilistic studies between C^* -algebras: **cpu maps** (completely positive unital). **Idea:** A probability measure p on a measurable space X requires:

- $p(U) \geq 0 \rightsquigarrow$ (Complete) positivity
- $p(X) = 1 \rightsquigarrow$ Unitality

Riesz–Markov–Kakutani: $\{C(X) \rightarrow \mathbb{C} \text{ cpu maps}\} \cong \{(\text{Radon}) \text{ probability measures on } X\}.$

Probabilistic Gelfand duality

Probabilistic studies between C^* -algebras: **cpu maps** (completely positive unital). **Idea:** A probability measure p on a measurable space X requires:

- $p(U) \geq 0 \rightsquigarrow$ (Complete) positivity
- $p(X) = 1 \rightsquigarrow$ Unitality

Riesz–Markov–Kakutani: $\{C(X) \rightarrow \mathbb{C} \text{ cpu maps}\} \cong \{(\text{Radon probability measures on } X)\}$.

Probabilistic Gelfand duality¹

$$\left\{ \begin{array}{l} \text{compact Hausdorff spaces} \\ \text{and } \textit{continuous} \text{ Markov} \\ \text{kernels} \end{array} \right\} \xrightarrow{\cong^{\text{op}}} \left\{ \begin{array}{l} \text{commutative} \\ \text{algebras and cpu maps} \end{array} \right\} \quad C^*$$

¹Robert W. J. Furber and Bart P. F. Jacobs. From Kleisli categories to commutative C^* -algebras: Probabilistic Gelfand duality. *Logical Methods in Computer Science*, 11, 2015.

This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular conditionals are generally not continuous!

This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular conditionals are generally not continuous!

⇒ commutative C^* -algebras are not good for probability!

This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular conditionals are generally not continuous!

⇒ commutative C^* -algebras are not good for probability!

Main motivation (concrete)

An equivalence between the category of standard Borel spaces and Markov kernels and a category of special commutative C^* -algebras.

This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular conditionals are generally not continuous!

⇒ commutative C^* -algebras are not good for probability!

Main motivation (concrete)

An equivalence between the category of standard Borel spaces and Markov kernels and a category of special commutative C^* -algebras.

By dropping commutative we get a setting with both classical and quantum probability.

This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular conditionals are generally not continuous!

⇒ commutative C^* -algebras are not good for probability!

Main motivation (concrete)

An equivalence between the category of standard Borel spaces and Markov kernels and a category of special commutative C^* -algebras.

By dropping commutative we get a setting with both classical and quantum probability.

Disclaimer²

Similar goal: find an equivalence with von Neumann algebras, but then we have a less familiar commutative side (enhanced measurable spaces).

²D. Pavlov. Gelfand-type duality for commutative von Neumann algebras. *J. Pure Appl. Algebra*, 226(4):106884, 2022.

In quantum logic, it is common to consider **ortholattices** given by the set of projections of certain C^* -algebras.

In quantum logic, it is common to consider **ortholattices** given by the set of projections of certain C^* -algebras.

BUT projections of general C^* -algebras do not form a lattice:

⇒ the generality of C^* -algebras is not ideal for quantum logic!

In quantum logic, it is common to consider **ortholattices** given by the set of projections of certain C^* -algebras.

BUT projections of general C^* -algebras do not form a lattice:

⇒ the generality of C^* -algebras is not ideal for quantum logic!

This issue can be addressed by taking von Neumann algebras.

In quantum logic, it is common to consider **ortholattices** given by the set of projections of certain C^* -algebras.

BUT projections of general C^* -algebras do not form a lattice:

⇒ the generality of C^* -algebras is not ideal for quantum logic!

This issue can be addressed by taking von Neumann algebras. We will offer a different approach.

Deterministic side

The C^* -algebra associated to a measurable space

Let X be a measurable space.

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

“Problem”:

$$X = \{0, 1\}$$

$$\Sigma_X = \mathcal{P}(X)$$

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

“Problem”:

$$X = \{0, 1\}$$

$$\Sigma_X = \mathcal{P}(X)$$

$$Y = \mathbb{R}$$

$$\Sigma_Y = \{\emptyset, E, E^c, \mathbb{R}\}$$
$$(\emptyset \subsetneq E \subsetneq \mathbb{R})$$

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

“Problem”:

$$X = \{0, 1\}$$

$$\Sigma_X = \mathcal{P}(X)$$

$$Y = \mathbb{R}$$

$$\Sigma_Y = \{\emptyset, E, E^c, \mathbb{R}\}$$

$$(\emptyset \subsetneq E \subsetneq \mathbb{R})$$

$$\implies \mathcal{L}^\infty(X) \cong \mathcal{L}^\infty(Y)$$

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

“Problem”:

$$X = \{0, 1\}$$

$$\Sigma_X = \mathcal{P}(X)$$

$$Y = \mathbb{R}$$

$$\Sigma_Y = \{\emptyset, E, E^c, \mathbb{R}\}$$

$$(\emptyset \subsetneq E \subsetneq \mathbb{R})$$

$$\implies \mathcal{L}^\infty(X) \cong \mathcal{L}^\infty(Y)$$

\implies Equivalence

The C^* -algebra associated to a measurable space

Let X be a measurable space.

$\implies \mathcal{L}^\infty(X) := \{f: X \rightarrow \mathbb{C} \text{ bounded measurable}\}.$

“Problem”:

$$X = \{0, 1\}$$

$$\Sigma_X = \mathcal{P}(X)$$

$$Y = \mathbb{R}$$

$$\Sigma_Y = \{\emptyset, E, E^c, \mathbb{R}\}$$

$$(\emptyset \subsetneq E \subsetneq \mathbb{R})$$

$$\implies \mathcal{L}^\infty(X) \cong \mathcal{L}^\infty(Y)$$

\implies Equivalence Adjunction?

What additional property is satisfied by $\mathcal{L}^\infty(X)$?

³Kazuyuki Saitô and J. D. Maitland Wright. *Monotone Complete C^* -algebras and Generic Dynamics*. Springer Monogr. Math. Springer London, 2015.

What additional property is satisfied by $\mathcal{L}^\infty(X)$?

A σC^* -algebra \mathcal{A} , or monotone σ -complete C^* -algebra³, is a C^* -algebra such that (every bounded monotone increasing sequence (a_n) has a supremum $\sup_n a_n$)

³Kazuyuki Saitô and J. D. Maitland Wright. *Monotone Complete C^* -algebras and Generic Dynamics*. Springer Monogr. Math. Springer London, 2015.

What additional property is satisfied by $\mathcal{L}^\infty(X)$?

A σC^* -algebra \mathcal{A} , or monotone σ -complete C^* -algebra³, is a C^* -algebra such that (every bounded monotone increasing sequence (a_n) has a supremum $\sup_n a_n$) pointwise limits can be defined!

³Kazuyuki Saitô and J. D. Maitland Wright. *Monotone Complete C^* -algebras and Generic Dynamics*. Springer Monogr. Math. Springer London, 2015.

What additional property is satisfied by $\mathcal{L}^\infty(X)$?

A σC^* -algebra \mathcal{A} , or monotone σ -complete C^* -algebra³, is a C^* -algebra such that (every bounded monotone increasing sequence (a_n) has a supremum $\sup_n a_n$) pointwise limits can be defined!

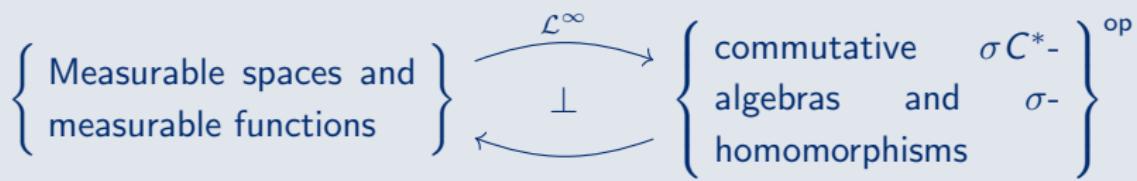
Instructive example

$$\mathcal{L}^\infty([0, 1]) := \left\{ \begin{array}{l} \text{λ-a.s. classes of bounded measurable} \\ \text{functions } f: [0, 1] \rightarrow \mathbb{C} \end{array} \right\}$$

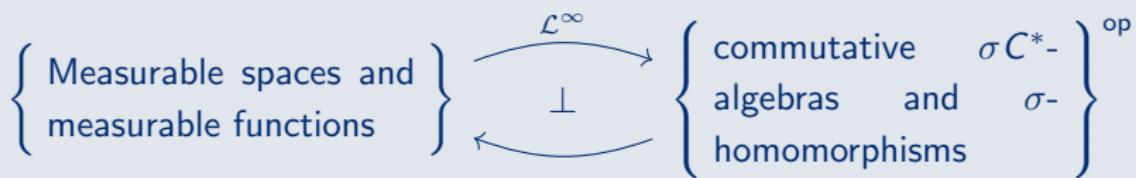
is a commutative σC^* -algebra such that $\mathcal{L}^\infty([0, 1]) \not\cong \mathcal{L}^\infty(X)$ for any choice of measurable X .

³Kazuyuki Saitô and J. D. Maitland Wright. *Monotone Complete C^* -algebras and Generic Dynamics*. Springer Monogr. Math. Springer London, 2015.

Measurable Gelfand duality



Measurable Gelfand duality



σ -homomorphism: $*$ -homomorphism that preserves the suprema of bounded monotone increasing sequences.

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

In particular, commutative σC^* -algebras yield Boolean σ -algebras (Boolean algebras with countably infinite meets).

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

In particular, commutative σC^* -algebras yield **Boolean σ -algebras** (Boolean algebras with countably infinite meets).

Examples

$\mathcal{B}(\mathbb{C})$ the Borel σ -algebra of \mathbb{C} , $\mathcal{B}(\mathbb{C})/M$ and $\mathcal{B}(\mathbb{C})/N$, with M the ideal of meager sets and N the ideal of Lebesgue null sets.

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

In particular, commutative σC^* -algebras yield **Boolean σ -algebras** (Boolean algebras with countably infinite meets).

Examples

$\mathcal{B}(\mathbb{C})$ the Borel σ -algebra of \mathbb{C} , $\mathcal{B}(\mathbb{C})/M$ and $\mathcal{B}(\mathbb{C})/N$, with M the ideal of meager sets and N the ideal of Lebesgue null sets.

$\mathcal{L}_{\text{abs}}^\infty(B) := \{\mathcal{B}(\mathbb{C}) \rightarrow B \text{ bounded } \sigma\text{-homomorphisms}\}$ is a σC^* -algebra.

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

In particular, commutative σC^* -algebras yield **Boolean σ -algebras** (Boolean algebras with countably infinite meets).

Examples

$\mathcal{B}(\mathbb{C})$ the Borel σ -algebra of \mathbb{C} , $\mathcal{B}(\mathbb{C})/M$ and $\mathcal{B}(\mathbb{C})/N$, with M the ideal of meager sets and N the ideal of Lebesgue null sets.

$\mathcal{L}_{\text{abs}}^\infty(B) := \{\mathcal{B}(\mathbb{C}) \rightarrow B \text{ bounded } \sigma\text{-homomorphisms}\}$ is a σC^* -algebra.
 $(\mathcal{B}(\mathbb{C}) \rightarrow B)$ play the role of $(X \rightarrow \mathbb{C})$.

The lattice of projections

The set of projections $\text{Proj}(\mathcal{A})$ of a σC^* -algebra \mathcal{A} is an (ortho)lattice, and furthermore it is σ -complete (countably infinite joins and meets).

In particular, commutative σC^* -algebras yield **Boolean σ -algebras** (Boolean algebras with countably infinite meets).

Examples

$\mathcal{B}(\mathbb{C})$ the Borel σ -algebra of \mathbb{C} , $\mathcal{B}(\mathbb{C})/M$ and $\mathcal{B}(\mathbb{C})/N$, with M the ideal of meager sets and N the ideal of Lebesgue null sets.

$\mathcal{L}_{\text{abs}}^\infty(B) := \{\mathcal{B}(\mathbb{C}) \rightarrow B \text{ bounded } \sigma\text{-homomorphisms}\}$ is a σC^* -algebra.

$(\mathcal{B}(\mathbb{C}) \rightarrow B)$ play the role of $(X \rightarrow \mathbb{C})$.

NB: $L^\infty([0, 1]) \cong \mathcal{L}_{\text{abs}}^\infty(\mathcal{B}([0, 1])/N)$.

Equivalence with Boolean σ -algebras

Theorem

$$\left\{ \begin{array}{l} \text{Boolean } \sigma\text{-algebras and} \\ \sigma\text{-homomorphisms} \end{array} \right\} \xrightleftharpoons[\text{Proj}]{\cong} \left\{ \begin{array}{l} \text{commutative } \sigma C^* \text{-} \\ \text{algebras and } \sigma\text{-} \\ \text{homomorphisms} \end{array} \right\}$$

Equivalence with Boolean σ -algebras

Theorem

$$\left\{ \begin{array}{l} \text{Boolean } \sigma\text{-algebras and} \\ \sigma\text{-homomorphisms} \end{array} \right\} \xrightleftharpoons[\text{Proj}]{\cong} \left\{ \begin{array}{l} \text{commutative } \sigma C^* \text{-} \\ \text{algebras and } \sigma\text{-} \\ \text{homomorphisms} \end{array} \right\}$$

In particular, $\mathcal{L}^\infty(X) \cong \mathcal{L}^\infty_{\text{abs}}(\Sigma_X)$.

Equivalence with Boolean σ -algebras

Theorem

$$\left\{ \begin{array}{l} \text{Boolean } \sigma\text{-algebras and} \\ \sigma\text{-homomorphisms} \end{array} \right\} \begin{array}{c} \xrightarrow{\mathcal{L}_{\text{abs}}^{\infty}} \\ \cong \\ \xleftarrow{\text{Proj}} \end{array} \left\{ \begin{array}{l} \text{commutative } \sigma C^* \text{-} \\ \text{algebras and } \sigma\text{-} \\ \text{homomorphisms} \end{array} \right\}$$

In particular, $\mathcal{L}^{\infty}(X) \cong \mathcal{L}_{\text{abs}}^{\infty}(\Sigma_X)$.

NB. The adjunction between Boolean σ -algebras and measurable spaces was already noted.⁴

⁴Ruiyuan Chen. A universal characterization of standard Borel spaces. *J. Symb. Log.*, 88(2):510–539, 2023.

Restriction to meaningful measurable spaces

Can we find an equivalence with measurable spaces if we restrict the category?

Restriction to meaningful measurable spaces

Can we find an equivalence with measurable spaces if we restrict the category?

Pedersen–Baire envelopes

For \mathcal{A} a C^* -algebra, there exists a σC^* -algebra \mathcal{A}^∞ , called the Pedersen–Baire envelope of \mathcal{A} , such that

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{\text{hom}} & \mathcal{B} \\ \downarrow & \nearrow !\sigma\text{hom} & \\ \mathcal{A}^\infty & & \end{array}$$

for any σC^* -algebra \mathcal{B} .

Restriction to meaningful measurable spaces

Can we find an equivalence with measurable spaces if we restrict the category?

Pedersen–Baire envelopes

For \mathcal{A} a C^* -algebra, there exists a σC^* -algebra \mathcal{A}^∞ , called the Pedersen–Baire envelope of \mathcal{A} , such that

$$\begin{array}{ccc} \mathcal{A} & \xrightarrow{\text{hom}} & \mathcal{B} \\ \downarrow & \nearrow !\sigma\text{hom} & \\ \mathcal{A}^\infty & & \end{array}$$

for any σC^* -algebra \mathcal{B} .

In other words, $(-)^{\infty}$ is a functor from C^* -algebras to σC^* -algebras, left adjoint to the forgetful functor.

Pedersen–Baire duality

$C(X)^\infty \cong \mathcal{L}^\infty(X)$ for every compact Hausdorff space, using *Baire measurability*.

Pedersen–Baire duality

$C(X)^\infty \cong \mathcal{L}^\infty(X)$ for every compact Hausdorff space, using *Baire measurability*.

Pedersen–Baire duality

$$\left\{ \begin{array}{l} \text{Baire measurable spaces} \\ \text{and measurable functions} \end{array} \right\} \xrightarrow{\cong^{\text{op}}} \left\{ \begin{array}{l} \text{commutative Pedersen–} \\ \text{Baire envelopes and} \\ \sigma\text{-homomorphisms} \end{array} \right\}$$

Pedersen–Baire duality

$C(X)^\infty \cong \mathcal{L}^\infty(X)$ for every compact Hausdorff space, using *Baire measurability*.

Pedersen–Baire duality

$$\left\{ \begin{array}{l} \text{Baire measurable spaces} \\ \text{and measurable functions} \end{array} \right\} \xrightarrow{\cong^{\text{op}}} \left\{ \begin{array}{l} \text{commutative Pedersen–} \\ \text{Baire envelopes and} \\ \sigma\text{-homomorphisms} \end{array} \right\}$$

NB. Baire measurable spaces have been investigated as a good framework outside “countable restrictions”.⁵

⁵Asgar Jamneshan and Terence Tao. Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration. *Fundam. Math.*, 261(1):1–98, 2023.

Standard Borel spaces

X second-countable compact Hausdorff \implies standard Borel space.
 \iff $C(X)$ separable.

Standard Borel spaces

X second-countable compact Hausdorff \implies standard Borel space.
 \iff $C(X)$ separable.

\implies standard Borel spaces are contravariantly equivalent to

- commutative Pedersen–Baire envelopes of separable C^* -algebras,

Standard Borel spaces

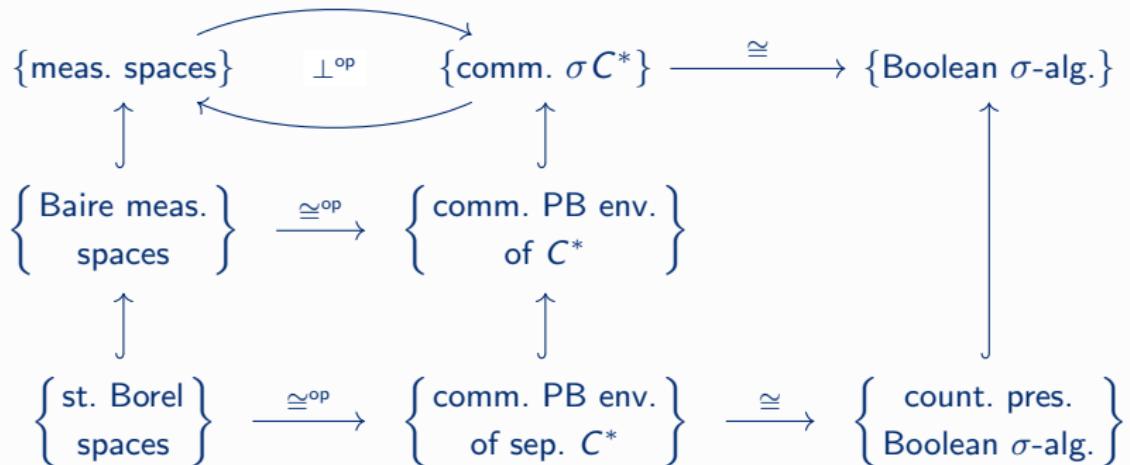
X second-countable compact Hausdorff \implies standard Borel space.
 \iff $C(X)$ separable.

\implies standard Borel spaces are contravariantly equivalent to

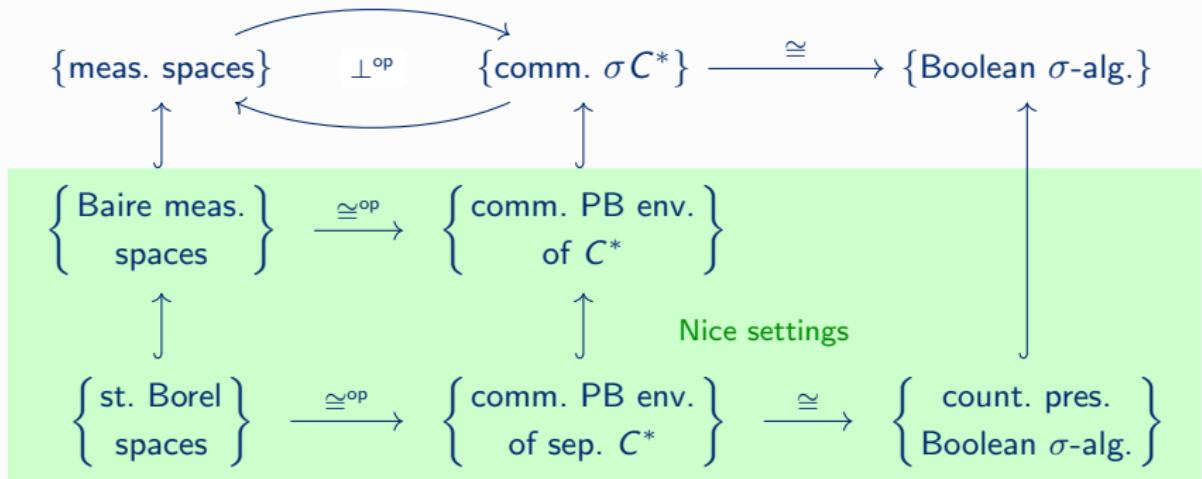
- commutative Pedersen–Baire envelopes of separable C^* -algebras, and
- countably presented Boolean σ -algebras.⁴

⁴Ruiyuan Chen. A universal characterization of standard Borel spaces. *J. Symb. Log.*, 88(2):510–539, 2023.

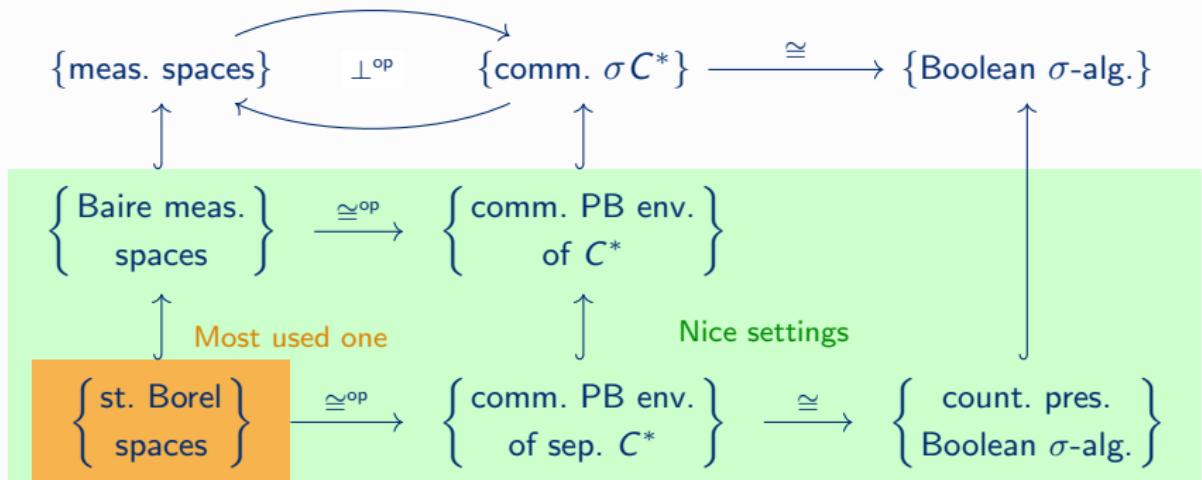
Overview



Overview



Overview



Probabilistic side

Probability measures and generalized POVMs

Let B be a Boolean σ -algebra. A *probability measure* on B is a function $\mu: B \rightarrow \mathbb{C}$ such that

1. (positivity) $\mu(p) \geq 0$ for all $p \in B$;
2. (normalization) $\mu(\top) = 1$;
3. (σ -additivity) (p_n) countable sequence pairwise disjoint,

$$\mu \left(\bigvee_n p_n \right) = \sum_n \mu(p_n)$$

Probability measures and generalized POVMs

Let B be a Boolean σ -algebra and let \mathcal{A} be a σC^* -algebra. A *probability measure* on B is a function $\mu: B \rightarrow \mathbb{C}$ such that

1. (positivity) $\mu(p) \geq 0$ for all $p \in B$;
2. (normalization) $\mu(\top) = 1$;
3. (σ -additivity) (p_n) countable sequence pairwise disjoint,

$$\mu \left(\bigvee_n p_n \right) = \sum_n \mu(p_n)$$

Probability measures and generalized POVMs

Let B be a Boolean σ -algebra and let \mathcal{A} be a σC^* -algebra. An \mathcal{A} -valued *POVM* on B is a function $\mu: B \rightarrow \mathcal{A}$ such that

1. (positivity) $\mu(p) \geq 0$ for all $p \in B$;
2. (normalization) $\mu(\top) = 1$;
3. (σ -additivity) (p_n) countable sequence pairwise disjoint,

$$\mu \left(\bigvee_n p_n \right) = \sum_n \mu(p_n)$$

Probability measures and generalized POVMs

Let B be a Boolean σ -algebra and let \mathcal{A} be a σC^* -algebra. An \mathcal{A} -valued *POVM* on B is a function $\mu: B \rightarrow \mathcal{A}$ such that

1. (positivity) $\mu(p) \geq 0$ for all $p \in B$;
2. (normalization) $\mu(\top) = 1$;
3. (σ -additivity) (p_n) countable sequence pairwise disjoint,

$$\mu \left(\bigvee_n p_n \right) = \sum_n \mu(p_n)$$

NB. If $B = \Sigma_Y$ and $\mathcal{A} = \mathcal{L}^\infty(X)$, this is basically a Markov kernel $X \rightarrow Y$!

Extending POVMs

Every measurable set $U \in \Sigma_X$ gives a characteristic function $\chi_U \in \mathcal{L}^\infty(X)$.

Every measurable set $U \in \Sigma_X$ gives a characteristic function $\chi_U \in \mathcal{L}^\infty(X)$. We have an obvious POVM $\chi_-: B \rightarrow \mathcal{L}_{\text{abs}}^\infty(B)$.

Every measurable set $U \in \Sigma_X$ gives a characteristic function $\chi_U \in \mathcal{L}^\infty(X)$. We have an obvious POVM $\chi_-: B \rightarrow \mathcal{L}_{\text{abs}}^\infty(B)$.

Theorem

Let $\mu: B \rightarrow \mathcal{A}$ a POVM. Then

$$\begin{array}{ccc} B & \xrightarrow{\mu} & \mathcal{A} \\ \chi_- \downarrow & \nearrow \tilde{\mu} & \\ \mathcal{L}_{\text{abs}}^\infty(B) & & \end{array}$$

with $\tilde{\mu}$ a σ -cpu map (cpu map that preserves suprema of monotone increasing sequences).

Every measurable set $U \in \Sigma_X$ gives a characteristic function $\chi_U \in \mathcal{L}^\infty(X)$. We have an obvious POVM $\chi_-: B \rightarrow \mathcal{L}_{\text{abs}}^\infty(B)$.

Theorem

Let $\mu: B \rightarrow \mathcal{A}$ a POVM. Then

$$\begin{array}{ccc} B & \xrightarrow{\mu} & \mathcal{A} \\ \chi_- \downarrow & \nearrow \tilde{\mu} & \\ \mathcal{L}_{\text{abs}}^\infty(B) & & \end{array}$$

with $\tilde{\mu}$ a σ -cpu map (cpu map that preserves suprema of monotone increasing sequences).

Idea: Lebesgue integral!⁶

⁶J. D. Maitland Wright. Measures with Values in a Partially Ordered Vector Space. Proceedings of the London Mathematical Society, s3-25(4):675–688, 11 1972.

POVMs on lattices?

Can we reason similarly for σ -complete lattices coming from monotone σ -complete C^* -algebras?

POVMs on lattices?

Can we reason similarly for σ -complete lattices coming from monotone σ -complete C^* -algebras?

No, because there are examples such that $\mathcal{A} \not\cong \mathcal{A}^{\text{op}}$, but $\text{Proj}(\mathcal{A}) \cong \text{Proj}(\mathcal{A}^{\text{op}})$.

POVMs on lattices?

Can we reason similarly for σ -complete lattices coming from monotone σ -complete C^* -algebras?

No, because there are examples such that $\mathcal{A} \not\cong \mathcal{A}^{\text{op}}$, but $\text{Proj}(\mathcal{A}) \cong \text{Proj}(\mathcal{A}^{\text{op}})$.

A possible way to overcome this issue is by considering unitary actions,⁷ but this is beyond our scope.

⁷C. Heunen and M. L. Reyes. Active lattices determine AW^* -algebras. *J. Math. Anal. Appl.*, 416(1):289– 313, 2014.

Corollary

$$\left\{ \begin{array}{l} \text{measurable spaces and} \\ \text{Markov kernels} \end{array} \right\} \xrightarrow{f.f. \text{ op}} \left\{ \begin{array}{l} \text{commutative} \\ \text{algebras and} \\ \text{maps} \end{array} \quad \begin{array}{l} \sigma C^*- \\ \sigma\text{-cpu} \end{array} \right\}$$

Final results

Corollary

$$\left\{ \begin{array}{l} \text{measurable spaces and} \\ \text{Markov kernels} \end{array} \right\} \xrightarrow{f.f.}{}^{\text{op}} \left\{ \begin{array}{l} \text{commutative} \\ \text{algebras and} \\ \text{maps} \end{array} \quad \begin{array}{l} \sigma C^*- \\ \sigma\text{-cpu} \end{array} \right\}$$

Corollary

$$\left\{ \begin{array}{l} \text{Baire} \\ \text{spaces} \\ \text{kernels} \end{array} \quad \begin{array}{l} \text{measurable} \\ \text{and} \\ \text{Markov} \end{array} \right\} \xrightarrow{\cong}{}^{\text{op}} \left\{ \begin{array}{l} \text{commutative} \\ \text{Baire envelopes} \\ \text{maps} \end{array} \quad \begin{array}{l} \text{Pedersen--} \\ \text{and} \\ \sigma\text{-cpu} \end{array} \right\}$$

Corollary

$$\left\{ \begin{array}{l} \text{standard Borel spaces} \\ \text{and Markov kernels} \end{array} \right\} \xrightarrow{\cong^{\text{op}}} \left\{ \begin{array}{l} \text{commutative Baire envelopes of} \\ \text{separable } C^*\text{-algebras} \\ \text{and } \sigma\text{-cpu maps} \end{array} \right\}$$

Two remarks

- We can equip Pedersen–Baire envelopes with a tensor product giving rise to a symmetric monoidal category (whose monoidal unit is initial);

Two remarks

- We can equip Pedersen–Baire envelopes with a tensor product giving rise to a symmetric monoidal category (whose monoidal unit is initial);
- The last two equivalences are strong monoidal functors (they also preserve the Markov category structures).

Key takeaways

- Algebraic descriptions of measurable spaces (σC^* -algebras and Boolean σ -algebras);

Key takeaways

- Algebraic descriptions of measurable spaces (σC^* -algebras and Boolean σ -algebras);
- Stronger connections to quantum logic (σ -complete ortholattices);

Key takeaways

- Algebraic descriptions of measurable spaces (σC^* -algebras and Boolean σ -algebras);
- Stronger connections to quantum logic (σ -complete ortholattices);
- Markov kernels are σ -cpu maps;

Key takeaways

- Algebraic descriptions of measurable spaces (σC^* -algebras and Boolean σ -algebras);
- Stronger connections to quantum logic (σ -complete ortholattices);
- Markov kernels are σ -cpu maps;
- Extension of Markov kernels to Boolean σ -algebras;

Key takeaways

- Algebraic descriptions of measurable spaces (σC^* -algebras and Boolean σ -algebras);
- Stronger connections to quantum logic (σ -complete ortholattices);
- Markov kernels are σ -cpu maps;
- Extension of Markov kernels to Boolean σ -algebras;
- Plausible setting for measurable studies in quantum probability (Pedersen–Baire envelopes).

THANK YOU FOR YOUR ATTENTION