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Classical and quantum probability together

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a
“nice way" .

Classical probability:

Measurable spaces (X, X x), or just X. (Xx is a o-algebra.)

For well-behaved measurable spaces, one generally restricts to standard
Borel spaces (2 finite sets, Z or R).

Quantum probability: (unital) C*-algebras.

(Quantum logic: ortholattices).
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Algebras of observables

Hilbert space H = Quantum system
B(H) = {H — H bounded} = All possible observables

C*-algebra

C-algebra C B(H)
*-closed

unital

norm-complete

. def
Positive cone: a >0 <= a= b*b for some b.
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e M,, the algebra of n x n matrices. For A€ M,,

A" = AT, A >0 <= positive semidefinite.
e Given a compact Hausdorff space X,

C(X) = {f: X — C continuous}

is a C*-algebra with *(x) := f(x). £ > 0 iff f(x) > 0 for all x € X.

Gelfand duality
X +— C(X) yields a contravariant equivalence

compact Hausdorff commutative C*-
~sop

spaces and continuous e algebras and *-

maps homomorphisms
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Probabilistic studies between C*-algebras: cpu maps (completely positive
unital). Idea: A probability measure p on a measurable space X requires:

e p(U) >0 ~» (Complete) positivity
e p(X) =1~ Unitality

Riesz—Markov—Kakutani: {C(X) — C cpu maps} = {(Radon)
probability measures on X}.

Probabilistic Gelfand duality!

compact Hausdorff spaces . .
. avop commutative C*-
and continuous Markov —
algebras and cpu maps
kernels

IRobert W. J. Furber and Bart P. F. Jacobs. From Kleisli categories to commutative
C*-algebras: Probabilistic Gelfand duality. Logical Methods in Computer Science, 11,
2015.
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This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular

conditionals are generally not continuous!

— commutative C*-algebras are not good for probability!

Main motivation (concrete)
An equivalence between the category of standard Borel spaces and
Markov kernels and a category of special commutative C*-algebras.

By dropping commutative we get a setting with both classical and
quantum probability.

Disclaimer?

Similar goal: find an equivalence with von Neumann algebras, but then
we have a less familiar commutative side (enhanced measurable spaces).

°D. Pavlov. Gelfand-type duality for commutative von Neumann algebras. J. Pure

Appl. Algebra, 226(4):106884, 2022.
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... Also for quantum logic

In quantum logic, it is common to consider ortholattices given by the set
of projections of certain C*-algebras.

BUT projections of general C*-algebras do not form a lattice:
= the generality of C*-algebras is not ideal for quantum logic!

This issue can be addressed by taking von Neumann algebras. We will
offer a different approach.

7/23
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Let X be a measurable space.

= L>(X) = {f: X — C bounded measurable}.
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X ={0,1} Y=R
ZXII]D()<) ZY:{®7E7EC7R}
(& C ECR)
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3Kazuyuki Saité and J. D. Maitland Wright. Monotone Complete C*-algebras and
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o C*-algebras

What additional property is satisfied by £>°(X)?

A o C*-algebra A, or monotone o-complete C*—algebra3, is a C*-algebra
such that (every bounded monotone increasing sequence (a,) has a
supremum sup,, a,) pointwise limits can be defined!

Instructive example

A-a.s. classes of bounded measurable
L 1]) :=
([0,1) {functions f:]0,1] — C }

is a commutative o C*-algebra such that L>°([0, 1]) 2 L£°(X) for any
choice of measurable X.

3Kazuyuki Saité and J. D. Maitland Wright. Monotone Complete C*-algebras and
Generic Dynamics. Springer Monogr. Math. Springer London, 2015.
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Adjunction with measurable spaces

Measurable Gelfand duality

2= . . ) °P
_—— | commutative oC*-
Measurable spaces and
. L algebras  and  o-
measurable functions .
*~—_— | homomorphisms

o-homomorphism: x-homomorphism that preserves the suprema of
bounded monotone increasing sequences.
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The set of projections Proj(.A) of a o C*-algebra A is an (ortho)lattice,
and furthermore it is o-complete (countably infinite joins and meets).

In particular, commutative o C*-algebras yield Boolean o-algebras
(Boolean algebras with countably infinite meets).

Examples

B(C) the Borel o-algebra of C, B(C)/M and B(C)/N, with M the
ideal of meager sets and N the ideal of Lebesgue null sets.

L (B) = {B(C) — B bounded o-homomorphisms} is a o C*-algebra.
(B(C) — B) play the role of (X — C).
NB: L>([0,1]) = L3, (B([0, 1])/N).
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= algebras  and  o-
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Equivalence with Boolean s-algebras

Theorem

Lo

abs

Boolean o-algebras and /g\
o-homomorphisms ~___

commutative oC*-
algebras and  o-

: homomorphisms
Proj

In particular, £(X) = L. (Xx).

abs
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Equivalence with Boolean s-algebras

Theorem

‘Caol?s . *
_———— | commutative oC*-
Boolean o-algebras and -
) = algebras  and  o-
o-homomorphisms .
- | homomorphisms
roj

In particular, £(X) = L. (Xx).

abs

NB. The adjunction between Boolean o-algebras and measurable spaces
was already noted.*

4Ruiyuan Chen. A universal characterization of standard Borel spaces. J. Symb.
Log., 88(2):510-539, 2023.
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Restriction to meaningful measurable spaces

Can we find an equivalence with measurable spaces if we restrict the
category?

For A a C*-algebra, there exists a o C*-algebra A>°, called the
of A, such that

A hom B
AOO
for any o C*-algebra B.

In other words, (—)°° is a functor from C*-algebras to o C*-algebras, left
adjoint to the forgetful functor.
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Pedersen—Baire duality

C(X)> = L£>°(X) for every compact Hausdorff space, using Baire

measurability.

Pedersen—Baire duality

commutative Pedersen—

Baire measurable spaces avop .
— Baire  envelopes and

and measurable functions .
o-homomorphisms

NB. Baire measurable spaces have been investigated as a good

framework outside “countable restrictions” >

5Asgar Jamneshan and Terence Tao. Foundational aspects of uncountable measure
theory: Gelfand duality, Riesz representation, canonical models, and canonical
disintegration. Fundam. Math., 261(1):1-98, 2023.
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Standard Borel spaces

X second-countable compact Hausdorff =  standard Borel space.
<= C(X) separable.

— standard Borel spaces are contravariantly equivalent to

e commutative Pedersen—Baire envelopes of separable C*-algebras,
and

e countably presented Boolean o-algebras.*

4Ruiyuan Chen. A universal characterization of standard Borel spaces. J. Symb.
Log., 88(2):510-539, 2023.
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Overview

— T

{meas. spaces} 1P {comm. 0 C*} -—= {Boolean o-alg.}

Baire meas. ovop comm. PB env.
—
{ spaces } { of C* }

st. Borel avop comm. PB env. o~ count. pres.
— —
spaces of sep. C* Boolean o-alg.

16/23



m
{meas. spaces} 1P {comm. 0C*} ————— {Boolean o-alg.}
[—
Baire meas. avop comm. PB env.
—
spaces of C*
]\ ]\ Nice settings

st. Borel 0P comm. PB env.
—_—
spaces of sep. C*

14

count. pres.
Boolean o-alg.

16/23



— T

{meas. spaces} 1P {comm. 0 C*} — = 5 {Boolean o-alg.}

[—

Baire meas. oop comm. PB env.
*
spaces of C
]\ Most used one ]\ Nice settings

st. Borel avop comm. PB env. o~ count. pres.
— —
spaces of sep. C* Boolean o-alg.
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Probability measures and generalized POVMs

Let B be a Boolean o-algebra. A probability measure on B is a function
u: B — C such that

1. (positivity) p(p) > 0 for all p € B;
2. (normalization) u(T) =
3

. (o-additivity) (p,) countable sequence pairwise disjoint,

p (\/ Pn) = Zn:u(pn)
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Probability measures and generalized POVMs

Let B be a Boolean o-algebra and let A be a 0 C*-algebra. An A-valued
POVM on B is a function ;1: B — A such that

1. (positivity) p(p) > 0 for all p € B;
2. (normalization) u(T) =
3

. (o-additivity) (p,) countable sequence pairwise disjoint,

p (\/ Pn) = Zn:u(pn)

NB. If B=Xy and A = L£>(X), this is basically a Markov kernel
X =Yl
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Extending POVMs

Every measurable set U € ¥ x gives a characteristic function
Xu € L2°(X). We have an obvious POVM x_: B — L.(B).

abs

Let u: B — A a POVM. Then

with i a o-cpu map (cpu map that preserves suprema of monotone
increasing sequences).

Idea: Lebesgue integrall®

6J. D. Maitland Wright. Measures with Values in a Partially Ordered Vector Space.
Proceedings of the London Mathematical Society, s3-25(4):675-688, 11 1972.
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POVMs on lattices?

Can we reason similarly for o-complete lattices coming from monotone
o-complete C*-algebras?

No, because there are examples such that A 2 A°P, but
Proj(.A) = Proj(A°P).

A possible way to overcome this issue is by considering unitary actions,”

but this is beyond our scope.

7C. Heunen and M. L. Reyes. Active lattices determine AW *-algebras. J. Math.
Anal. Appl., 416(1):289- 313, 2014.
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Final results
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Final results

measurable spaces and
Markov kernels

Baire
spaces
kernels

commutative o C*-
f.f. °P
} algebras and o-cpu
maps
measurable commutative  Pedersen—
~/0p
and  Markov — Baire envelopes and o-cpu
maps
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...and restriction to standard Borel spaces

commutative Pedersen—
standard Borel spaces avop Baire envelopes of
and Markov kernels separable C*-algebras

and o-cpu maps
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Two remarks
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initial);
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Two remarks

e We can equip Pedersen—Baire envelopes with a tensor product giving
rise to a symmetric monoidal category (whose monoidal unit is
initial);

e The last two equivalences are strong monoidal functors (they also
preserve the Markov category structures).
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Key takeaways

Algebraic descriptions of measurable spaces (o C*-algebras and
Boolean c-algebras);

Stronger connections to quantum logic (o-complete ortholattices);

Markov kernels are o-cpu maps;

e Extension of Markov kernels to Boolean o-algebras;

Plausible setting for measurable studies in quantum probability
(Pedersen—Baire envelopes).
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