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Preliminaries and motivation



Classical and quantum probability together

Main motivation (rough statement)

Find a category encompassing classical and quantum probability in a

“nice way”.

Classical probability:

Measurable spaces (X ,ΣX ), or just X . (ΣX is a σ-algebra.)

For well-behaved measurable spaces, one generally restricts to standard

Borel spaces (∼= finite sets, Z or R).

Quantum probability: (unital) C∗-algebras.

(Quantum logic: ortholattices).
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Algebras of observables

Hilbert space H ⇒ Quantum system

B(H) := {H → H bounded} ⇒ All possible observables

C∗-algebra

C-algebra ⊆ B(H)
∗-closed

norm-complete

unital

Positive cone: a ≥ 0
def⇐⇒ a = b∗b for some b.
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Main examples

• Mn, the algebra of n × n matrices. For A ∈ Mn,

A∗ := AT , A ≥ 0 ⇐⇒ positive semidefinite.

• Given a compact Hausdorff space X ,

C (X ) := {f : X → C continuous}

is a C∗-algebra with f ∗(x) := f (x). f ≥ 0 iff f (x) ≥ 0 for all x ∈ X .

Gelfand duality

X 7→ C (X ) yields a contravariant equivalence
compact Hausdorff

spaces and continuous

maps

 ∼=op

−−→


commutative C∗-

algebras and ∗-
homomorphisms


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Probabilistic Gelfand duality

Probabilistic studies between C∗-algebras: cpu maps (completely positive

unital).

Idea: A probability measure p on a measurable space X requires:

• p(U) ≥ 0 ⇝ (Complete) positivity

• p(X ) = 1 ⇝ Unitality

Riesz–Markov–Kakutani: {C (X ) → C cpu maps} ∼= {(Radon)
probability measures on X}.

Probabilistic Gelfand duality1
compact Hausdorff spaces

and continuous Markov

kernels

 ∼=op

−−→

{
commutative C∗-

algebras and cpu maps

}

1Robert W. J. Furber and Bart P. F. Jacobs. From Kleisli categories to commutative

C*-algebras: Probabilistic Gelfand duality. Logical Methods in Computer Science, 11,

2015.
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This is unsatisfactory

Continuous Markov kernels are not ideal for probabilistic studies: Regular

conditionals are generally not continuous!

=⇒ commutative C∗-algebras are not good for probability!

Main motivation (concrete)

An equivalence between the category of standard Borel spaces and

Markov kernels and a category of special commutative C∗-algebras.

By dropping commutative we get a setting with both classical and

quantum probability.

Disclaimer2

Similar goal: find an equivalence with von Neumann algebras, but then

we have a less familiar commutative side (enhanced measurable spaces).

2D. Pavlov. Gelfand-type duality for commutative von Neumann algebras. J. Pure

Appl. Algebra, 226(4):106884, 2022.
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. . . Also for quantum logic

In quantum logic, it is common to consider ortholattices given by the set

of projections of certain C∗-algebras.

BUT projections of general C∗-algebras do not form a lattice:

=⇒ the generality of C∗-algebras is not ideal for quantum logic!

This issue can be addressed by taking von Neumann algebras. We will

offer a different approach.
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Deterministic side



The C ∗-algebra associated to a measurable space

Let X be a measurable space.

=⇒ L∞(X ) := {f : X → C bounded measurable}.

“Problem”:

X = {0, 1}
ΣX = P(X ) ΣY = {∅,E ,E c ,R}

(∅ ⊊ E ⊊ R)
=⇒ L∞(X ) ∼= L∞(Y )

=⇒((((((Equivalence Adjunction?
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σC ∗-algebras

What additional property is satisfied by L∞(X )?

A σC∗-algebra A, or monotone σ-complete C∗-algebra3, is a C∗-algebra

such that (every bounded monotone increasing sequence (an) has a

supremum supn an) pointwise limits can be defined!

Instructive example

L∞([0, 1]) :=

{
λ-a.s. classes of bounded measurable

functions f : [0, 1] → C

}
is a commutative σC∗-algebra such that L∞([0, 1]) ̸∼= L∞(X ) for any

choice of measurable X .

3Kazuyuki Saitô and J. D. Maitland Wright. Monotone Complete C*-algebras and

Generic Dynamics. Springer Monogr. Math. Springer London, 2015.

9/23



σC ∗-algebras

What additional property is satisfied by L∞(X )?

A σC∗-algebra A, or monotone σ-complete C∗-algebra3, is a C∗-algebra

such that (every bounded monotone increasing sequence (an) has a

supremum supn an)

pointwise limits can be defined!

Instructive example

L∞([0, 1]) :=

{
λ-a.s. classes of bounded measurable

functions f : [0, 1] → C

}
is a commutative σC∗-algebra such that L∞([0, 1]) ̸∼= L∞(X ) for any

choice of measurable X .
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Adjunction with measurable spaces

Measurable Gelfand duality

{
Measurable spaces and

measurable functions

} 
commutative σC∗-

algebras and σ-

homomorphisms


opL∞

⊥

σ-homomorphism: ∗-homomorphism that preserves the suprema of

bounded monotone increasing sequences.
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The lattice of projections

The set of projections Proj(A) of a σC∗-algebra A is an (ortho)lattice,

and furthermore it is σ-complete (countably infinite joins and meets).

In particular, commutative σC∗-algebras yield Boolean σ-algebras

(Boolean algebras with countably infinite meets).

Examples

B(C) the Borel σ-algebra of C, B(C)/M and B(C)/N, with M the

ideal of meager sets and N the ideal of Lebesgue null sets.

L∞
abs(B) := {B(C) → B bounded σ-homomorphisms} is a σC∗-algebra.

(B(C) → B) play the role of (X → C).

NB: L∞([0, 1]) ∼= L∞
abs(B([0, 1])/N).
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Equivalence with Boolean σ-algebras

Theorem

{
Boolean σ-algebras and

σ-homomorphisms

} 
commutative σC∗-

algebras and σ-

homomorphisms


L∞

abs

∼=

Proj

In particular, L∞(X ) ∼= L∞
abs(ΣX ).

NB. The adjunction between Boolean σ-algebras and measurable spaces

was already noted.4

4Ruiyuan Chen. A universal characterization of standard Borel spaces. J. Symb.

Log., 88(2):510–539, 2023.
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Restriction to meaningful measurable spaces

Can we find an equivalence with measurable spaces if we restrict the

category?

Pedersen–Baire envelopes

For A a C∗-algebra, there exists a σC∗-algebra A∞, called the

Pedersen–Baire envelope of A, such that

A B

A∞

hom

!σhom

for any σC∗-algebra B.

In other words, (−)∞ is a functor from C∗-algebras to σC∗-algebras, left

adjoint to the forgetful functor.
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Pedersen–Baire duality

C (X )∞ ∼= L∞(X ) for every compact Hausdorff space, using Baire

measurability.

Pedersen–Baire duality

{
Baire measurable spaces

and measurable functions

}
∼=op

−−→


commutative Pedersen–

Baire envelopes and

σ-homomorphisms


NB. Baire measurable spaces have been investigated as a good

framework outside “countable restrictions”.5

5Asgar Jamneshan and Terence Tao. Foundational aspects of uncountable measure

theory: Gelfand duality, Riesz representation, canonical models, and canonical

disintegration. Fundam. Math., 261(1):1–98, 2023.
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Standard Borel spaces

X second-countable compact Hausdorff =⇒ standard Borel space.

⇐⇒ C (X ) separable.

=⇒ standard Borel spaces are contravariantly equivalent to

• commutative Pedersen–Baire envelopes of separable C∗-algebras,

and

• countably presented Boolean σ-algebras.4

4Ruiyuan Chen. A universal characterization of standard Borel spaces. J. Symb.

Log., 88(2):510–539, 2023.
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Overview

Nice settingsMost used one

{meas. spaces} {comm. σC∗} {Boolean σ-alg.}

{
Baire meas.

spaces

} {
comm. PB env.

of C∗

}

{
st. Borel

spaces

} {
comm. PB env.

of sep. C∗

} {
count. pres.

Boolean σ-alg.

}

∼=

∼=op

∼=op ∼=

⊥op
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Probabilistic side



Probability measures and generalized POVMs

Let B be a Boolean σ-algebra. A probability measure on B is a function

µ : B → C such that

1. (positivity) µ(p) ≥ 0 for all p ∈ B;

2. (normalization) µ(⊤) = 1;

3. (σ-additivity) (pn) countable sequence pairwise disjoint,

µ

(∨
n

pn

)
=
∑
n

µ(pn)

NB. If B = ΣY and A = L∞(X ), this is basically a Markov kernel

X → Y !
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Extending POVMs

Every measurable set U ∈ ΣX gives a characteristic function

χU ∈ L∞(X ).

We have an obvious POVM χ− : B → L∞
abs(B).

Theorem

Let µ : B → A a POVM. Then

B A

L∞
abs(B)

µ

χ−
µ̃

with µ̃ a σ-cpu map (cpu map that preserves suprema of monotone

increasing sequences).

Idea: Lebesgue integral!6

6J. D. Maitland Wright. Measures with Values in a Partially Ordered Vector Space.

Proceedings of the London Mathematical Society, s3-25(4):675–688, 11 1972.
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POVMs on lattices?

Can we reason similarly for σ-complete lattices coming from monotone

σ-complete C∗-algebras?

No, because there are examples such that A ≁= Aop, but

Proj(A) ∼= Proj(Aop).

A possible way to overcome this issue is by considering unitary actions,7

but this is beyond our scope.

7C. Heunen and M. L. Reyes. Active lattices determine AW ∗-algebras. J. Math.

Anal. Appl., 416(1):289– 313, 2014.
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Final results

Corollary

{
measurable spaces and

Markov kernels

}
f .f .
↪−−→

op


commutative σC∗-

algebras and σ-cpu

maps



Corollary


Baire measurable

spaces and Markov

kernels

 ∼=op

−−→


commutative Pedersen–

Baire envelopes and σ-cpu

maps


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. . . and restriction to standard Borel spaces

Corollary

{
standard Borel spaces

and Markov kernels

}
∼=op

−−→


commutative Pedersen–

Baire envelopes of

separable C∗-algebras

and σ-cpu maps


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Two remarks

• We can equip Pedersen–Baire envelopes with a tensor product giving

rise to a symmetric monoidal category (whose monoidal unit is

initial);

• The last two equivalences are strong monoidal functors (they also

preserve the Markov category structures).
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Key takeaways

• Algebraic descriptions of measurable spaces (σC∗-algebras and

Boolean σ-algebras);

• Stronger connections to quantum logic (σ-complete ortholattices);

• Markov kernels are σ-cpu maps;

• Extension of Markov kernels to Boolean σ-algebras;

• Plausible setting for measurable studies in quantum probability

(Pedersen–Baire envelopes).
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